Blog PSI Polska

Inteligentne zarządzanie magazynem, czyli PSIwms AI

16.05.2022 - Zarządzanie magazynem

Sztuczna inteligencja w magazynie

Eksperci z Accenture prognozują, że do 2035 r. sztuczna inteligencja zwiększy wydajność w logistyce o ponad 40%. Zespół ekspertów PSI Polska pracuje obecnie nad projektem PSIwms AI, który wykorzystuje mechanizmy uczenia maszynowego do optymalizacji procesów logistycznych. Poszczególne komponenty wchodzące w skład środowiska WI są już wykorzystywane w magazynie LPP wspierając podejmowanie decyzji.


W Polsce jest niemal 24 mln mkw. powierzchni magazynowych i przemysłowych. Choć inwestycje rosną jak na drożdżach, to presja związana z kosztami paliwa, materiałów i pracy zmusza firmy produkcyjne i handlowe do poszukiwania sposobów optymalizacji. Branża logistyczna wiele obiecuje sobie szczególnie po automatyzacji i robotyzacji magazynów.

Z raportu "Logistyka w Polsce" wynika, że 75% firm dostrzega w tym obszarze największe szanse na rozwój logistyki. Do tej pory stosowane technologie oparte o sztuczną inteligencję miały jednak bardzo wąskie zastosowanie. PSI Polska pracuje nad innowacyjnym projektem, w którym sztuczna inteligencja będzie na bieżąco podpowiadać człowiekowi optymalne rozwiązania. Pierwsze testy pokazują, że robi to bardzo skutecznie.


Gra w wyzwanie

Ale zacznijmy od początku. Dwa lata temu inżynierowie z PSI Polska rozpoczęli współpracę z grupą naukowców z Politechniki Poznańskiej i Wrocławskiej, m.in. dr inż. Sławomirem Suszem z Wydziału Mechanicznego dolnośląskiej uczelni. Interdyscyplinarny zespół zaczął eksperymentować ze sztuczną inteligencją oraz uczeniem maszynowym. Choć nie są to nowe technologie, to wykorzystanie ich w logistyce jest wciąż w początkowym stadium.

- Na rynku istnieją technologie wspierające pracowników bardzo wybiórczo, głównie w obszarze ścieżki zbiórki. Nikt wcześniej nie stworzył technologii opartej o sztuczną inteligencję, która byłaby w stanie optymalizować wszystkie procesy magazynowe, traktując problem całościowo.  Zdecydowaliśmy się podjąć to wyzwanie – mówi Jerzy Danisz Kierownik Centrum Kompetencji WMS w firmie PSI Polska, opisując początki projektu.

PSIwms AI

Prace nad PSIwms AI podzielono na pięć etapów. W pierwszym opracowano prototyp środowiska WI. W drugim inżynierowie PSI Polska rozpoczęli tworzenie symulacji, czyli stworzenie cyfrowego bliźniaka rzeczywistego magazynu.

– Nasza idea polega na opracowaniu algorytmów sztucznej inteligencji, których zadaniem jest takie zarządzanie magazynem, aby osiągnąć optymalne wydajności poszczególnych procesów. Model ML (czyli algorytm machine learning/uczenia maszynowego) dostawał zadanie i miał znaleźć jak najlepsze rozwiązanie. Jeżeli udało mu się skutecznie zoptymalizować dany proces, wygrywał. Jeżeli nie, musiał próbować robić to dalej, aż do skutku. W ten sposób niejako metodą prób i błędów algorytm dochodzi to optymalnego rozwiązania, przy czym symulacja magazynu (cyfrowy bliźniak) pozwala na szybkie i praktycznie bezkosztowe przeanalizowanie setek tysięcy możliwych scenariuszy pracy magazynu – tłumaczy Jerzy Danisz.

Algorytm AI w magazynie
Rys. Schemat działania algorytmu AI


System optymalizuje picking

Pierwsze uzyskane wyniki są bardzo obiecujące (można o nich przeczytać tutaj). Okazało się, że wykorzystanie sztucznej inteligencji skróciło długość ścieżek kompletacyjnych w LPP aż o 30%. Jak to możliwe?

Podstawowym zadaniem wdrożonego algorytmu jest efektywne rozwiązywanie tzw. „problemu komiwojażera” (z angielskiego TSP). Polega on na wyznaczeniu najkrótszej trasy łączącej kilka punktów na mapie. W przypadku magazynu system musi wyznaczyć optymalną trasę przejścia dla kilkudziesięciu lokacji pickingowych. To, co na pierwszy rzut oka wydaje się proste, w rzeczywistości stanowi istotny problem dla matematyków od lat.

Pierwszy z modułów PSIwms AI złamał utarte reguły i schematy, jakimi posługiwali się pickerzy na magazynie i miał rację. Podpowiedzi algorytmu przyniosły już wymierne oszczędności. Szacuje się, że ponad 1/3 kosztów logistyki magazynowej pochodzi z kompletacji zamówienia. Ten proces jest kosztowny szczególnie w przestrzeniach, gdzie występuje dużym wolumen zamówień, np. w e-commerce.   

-Elementy poszczególnych zamówień są pobierane z miejsc ich składowania, a następnie pakowane i przygotowywane do wysyłki. Koszty kompletacji i pakowania zależą bezpośrednio od SKU, czyli jednostek magazynowych, a w naszym przypadku są to znaczące liczby. Dlatego optymalizacja w tym obszarze ma dla nas ogromne znaczenie. Wpływa bezpośrednio na wydajność magazynową i sprawność obsługi zamówień naszych klientów – opisuje Sebastian Sołtys, dyrektor ds. logistyki z LPP.

Innowacja z potencjałem

Efekt wdrożenia w LPP to tylko część projektu PSIwms AI. Jego celem jest opracowanie innowacyjnego środowiska kompleksowej analizy, planowania i optymalizacji procesów intralogistycznych, który bazować będzie na algorytmie sztucznej inteligencji. Oznacza to de facto możliwość optymalizacji wszystkich procesów magazynowych. Wykorzystanie mechanizmów uczenia maszynowego ze wzmocnieniem okazało się na tyle innowacyjnym podejściem, że na dofinansowanie projektu środki przyznało Narodowe Centrum Badań i Rozwoju. Firma PSI Polska dostała grant na badania i rozwój w wysokości niemal 3 mln złotych.
 
Obecnie realizowany jest czwarty etap projektu, którego celem jest intensywne uczenie algorytmów sztucznej inteligencji. W całym procesie jest on kluczowy. Nie ma tutaj drogi na skróty.  Trenowanie algorytmu po to, by był on zdolny do działania w docelowej lokalizacji, trwa około trzy miesiące. Biorąc pod uwagę, że system będzie obsługiwał przestrzeń, w której znajdują się miliony produktów i w której pracują setki pracowników, jeden kwartał na naukę to tempo ekspresowe.

 – Stworzenie algorytmu obsługującego tak złożony obiekt, jakim jest magazyn, to bardzo skomplikowany i złożony proces. Algorytmy uczenia ze wzmocnieniem bazują na interakcji z tzw. środowiskiem. W naszym przypadku środowiskiem jest magazyn, a konkretnie jego wierna cyfrowa kopia. Poprzez wielokrotne (idące często w setki tysięcy) powtarzanie różnych wariantów pracy magazynu na środowisku treningowym algorytm uczy się postępowania z konkretnymi sytuacjami (np. doborem sposobu kompletacji w zależności od struktury zleceń wydania). Następnie eksponując algorytm na dane z rzeczywistego magazynu, jest w stanie błyskawicznie zasugerować kierownikowi magazynu optymalne rozwiązanie. – wyjaśnia Jerzy Danisz.

Pilotażowe uruchomienie projektu planowane jest w magazynie LPP na początku roku 2023. Poszczególne komponenty wchodzące w skład środowiska WI są już wykorzystywane i pomagają optymalizować logistykę klientów firmy PSI.


PEAR podpowie opłacalność inwestycji

Opisywana technologia będzie integralną częścią systemu PSIwms, dostawca nie zamyka jednak do niej drzwi firmom zewnętrznym. PSIwms AI będzie mógł być integrowany z dowolnym systemem klasy WMS i z jego zalet będzie mogła korzystać każda firma handlowa i produkcyjna. Technologia będzie dostępna w dwóch wersjach: automatycznej (algorytmy sztucznej inteligencji – PSIwms AI) i jako analizator ze wsparciem człowieka, określony mianem PEAR. Pod tym terminem kryje się analizator procesu logistycznego, który pozwala przeprowadzać symulacje i obserwować je na trójwymiarowym modelu wraz z jego aktualnymi wskaźnikami KPI. Z tego rozwiązania już w najbliższym czasie będzie mogło skorzystać LPP.

- PEAR pozwala estymować opłacalność potencjalnych lub planowanych inwestycji i zmian. Użytkownik dostaje informacje, czy konkretna reorganizacja np. zakup nowego sortera będzie opłacalna i w jakim stopniu wpłynie na biznesowe operacje. W takiej sytuacji zdecydowanie łatwiej podjąć decyzję – tłumaczy Jerzy Danisz.

Po co w magazynie sztuczna inteligencja?

Optymalizacja procesów magazynowych jest jednym z najważniejszych wymagań współczesnej logistyki ze względu na jej bezpośrednie przełożenie na obniżenie kosztów operacyjnych pracy magazynu. W dobie intensywnego wzrostu automatyzacji magazynów i centrów dystrybucyjnych istnieje realne zapotrzebowanie wśród osób zarządzających logistyką na oprogramowanie poprawiające wydajność i efektywność procesów intralogistycznych

Rozwiązania sztucznej inteligencji umożliwiają firmom prognozowanie, symulacje z wykorzystywaniem danych w czasie rzeczywistym. Metody prognozowania popytu oparte na sztucznej inteligencji znacznie zmniejszają poziom błędów. Warto podkreślić, że firmy, które zaczną korzystać z AI w operacjach logistycznych, wcześniej niż ich rynkowi konkurenci dostaną premię za pierwszeństwo.